

ICOS Open Science Conference, Helsinki, Sept 2016

Combining Oceanic And Atmospheric Carbon Data to constrain CO₂ fluxes

in Europe and its surrounding oceans

Christian Rödenbeck

Max Planck Institute for Biogeochemistry, Jena

D. C. E. Bakker, B. Pfeil, G. Rehder, M. Glockzin, R. Keeling, and M. Heimann

In collaboration with

C. Le Quéré, S. Zaehle

N. Gruber, Y. Iida, A.R. Jacobson, S. Jones, P. Landschützer, N. Metzl, S. Nakaoka, A. Olsen, G.-H. Park, P. Peylin, K.B. Rodgers, T.P. Sasse, U. Schuster, J.D. Shutler, V. Valsala, R. Wanninkhof, J. Zeng,

> Many thanks to: Data contributors, DKRZ, CarboChange, IMBER/SOLAS

Atmosphere

Atmosphere

"Atmospheric Inversion" = Multidimensional linear regression

 Δ Temperature:

 \triangle Precipitation: (Jul-Sep)

-120 60 0 60 120

[Ciais et al., Nature (2005)]

Welcome to SOCAT

A Collection of Underway Ocean CO₂ Observations Quality Controlled by the Science Community

Version 2 Data Products:

Cruise Data Viewer

Gridded Data Viewer

Table of Cruises

Data Download

Data Use Policy

SOCAT Credits

SOCAT Version 1.5

Products using SOCAT

About

News

SOCAT Documentation:

	Meetings
	Publications
	Presentations
SOCAT Help:	
	Videos
	Frequently Asked Ouestions

Follow @SOCAT_CO2

Please contact submit@socat.info to report problems.

This page is hosted by <u>Benjamin Pfeil</u>, University of Bergen/Bjerknes Centre for Climate Research/SKD, Bergen (Norway) This page has been designed by Heather Koyuk, University of Washington/JISAO, Seattle (USA)

[http://www.socat.info/]

Data density / distribution

Surface Ocean Carbon Atlas -- Version 2

[www.socat.info]

Data density / distribution

Where 275 ≦ fC02 rec ≦ 725

Bridging data gaps

- → Interesting complementarity
- → Extracting robust features

SOCOM: Collating 14 mapping methods

SURFACE OCEAN pCO2 MAPPING INTERCOMPARISON

Seasonality:

Most methods roughly agree on phasing and amplitude

(also to Takahashi et al., 2009)

ightarrow Seasonality well constrained from data

Interannual Variations (IAV):

- Tropical Pacific:
 - * Biome with largest IAV
 - * Link to ENSO

Methods selected / weighted by relative IAV mismatch to SOCATv2

Thicker lines: methods **better matching** the data also **mutually agree** more closely

Interannual Variations (IAV):

- Tropical Pacific:
 - * Biome with largest IAV
 - * Link to ENSO

- Global Ocean:
 - * Larger spread
 - due to poorly constrained areas

Interannual Variations (IAV):

- Tropical Pacific:
 - * Biome with largest IAV
 - * Link to ENSO

Little decadal change Increasing sink

Bridging data gaps

- → Interesting complementarity
- → Extracting robust features

SOCOM: Collating 14 mapping methods

SURFACE OCEAN pCO2 MAPPING INTERCOMPARISON

Redfield stoichiometry

 $R_{\text{O:C}} \approx -1.4$

• Transport+Mixing:

Carbon Oxygen

- "Known truth"
 - (OCN, Zaehle et al., 2010)
- Retrieved from "synthetic data" (s04_v3.8 sites)

Atmospheric CO₂ data & *inversion*:

- Constraint on land variability
- Southern Ocean trends

Atmospheric CO₂ data & *inversion*:

- Constraint on land variability
- Southern Ocean trends

Surface-ocean pCO_2 data & *mapping:*

Well-constrained ocean seasonality •

Ocean IAV constrained e.g. in Eq. Pac. •

Atmospheric CO₂ data & *inversion*:

- Constraint on land variability
- Southern Ocean trends

Surface-ocean pCO_2 data & mapping:

Well-constrained ocean seasonality • Ocean IAV constrained e.g. in Eq. Pac. •

Ship-based atmospheric CO₂ meas.:

- Testing impact of additional data
- Potential for regional flux estimates

Atmospheric CO₂ data & *inversion*:

- Constraint on land variability
- Southern Ocean trends

Surface-ocean pCO_2 data & mapping:

Well-constrained ocean seasonality • Ocean IAV constrained e.g. in Eq. Pac. •

Jena

CarboScope

AL AL

Ship-based atmospheric CO₂ meas.:

- Testing impact of additional data
- Potential for regional flux estimates

Products available for download:

- Atmospheric CO_2 inversion •
- pCO_2 -based mixed-layer scheme
- Combined products, sensitivity cases, atm. fields $\ \bullet$

www.BGC-Jena.mpg.de/CarboScope/

BACK-UP SLIDES

Mapping methods

Bridging data gaps

- → Interesting complementarity
- → Extracting robust features

SOCOM: Collating 14 mapping methods

SURFACE OCEAN pCO2 MAPPING INTERCOMPARISON

Mapping methods

Bridging data gaps

- → Interesting complementarity
- → Extracting robust features

SOCOM: Collating 14 mapping methods

SURFACE OCEAN pCO2 MAPPING INTERCOMPARISON

(18.%) Jena oc_v1.4S (28.%) ETH-SOMFFN2016 90°S -270 -180 -90 Yearly CO2 flux (PgC/yr) 0.5 0.4 0.3 0.2 (18.%) Jena oc_v1.4S 0.1 Yearly pCO2 mismatch (uatm) Yearly pCO2 (uatm) -10 -30 -50

"Benchmark":

Keep seasonality+trend, but no IAV

 \rightarrow Mismatch \approx signal size

 \rightarrow "100% error"

(18.%) Jena oc_v1.4S

--- (100.%) Jena oc_v1.4S Benchmark

90°N

Interpolation:

Time-dep. DoF's \rightarrow Any IAV possible

Regression: Constant DoF's

 \rightarrow IAV from drivers

--- (18.%) Jena oc_v1.4S --- (121.%) Jena oc_v1.4S (CrossVal5yr0)

 \rightarrow Data-only interpolation cannot bridge multi-year gaps

 \rightarrow Regression against drivers (SST, SSS, Chl-a, atm. CO₂) offers some bridging capacity

—(62.%) ETH-SOMFFN2016 (Unconstrained periods)

 \rightarrow Regression against drivers (SST, SSS, Chl-a, atm. CO₂) offers some bridging capacity

Chl-a data only available since 1998

- do SST and SSS suffice?

-270

-180

-90

Southern Ocean – sparse data
-30 -50

Southern Ocean – sparse data

---- (47.%) ETH-SOMFFN2016 ---- (106.%) ETH-SOMFFN2016 (Unconstrained periods) ---- (53.%) ETH-SOMFFN2016, regr. SST & SSS

Southern Ocean - sparse data

- \rightarrow Bridging difficult & difficult to test
- \rightarrow again main modes similar w/o Chl-a

Southern Ocean – sparse data

- \rightarrow Bridging difficult & difficult to test
- \rightarrow again main modes similar w/o Chl-a
- \rightarrow Decadal trends also from data directly

Global Ocean flux – affected by data-sparse regions

ightarrow Complementary mapping methods (interpolation, regression) help to assess robustness